△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为S1(如图1);在余下的Rt△ADE和Rt△BDF中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S2(如图2);继续操作下去…;第2019次剪取后,余下的所有小三角形的面积之和是_____.
已知一个直角三角形的两条直角边的长是方程2x2﹣10x+9=0的两个实数根,则这个直角三角形的斜边长是_____.
如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为1:3,点A、B、E在x轴上.若正方形BEFG的边长为6,则点G的坐标为_____.
在△ABC中,∠A、∠B为锐角,且|tanA﹣1|+(﹣cosB)2=0,则∠C=_____°.
将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其它差别,每次摸球前先搅拌均匀.随机摸出一球不放回;再随机摸出一球,两次摸出的球上的汉字能组成“柠檬”的概率是_____.
抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=_____.