一次函数y=﹣3x﹣2的图象和性质,表述正确的是( )
A. y随x的增大而增大 B. 在y轴上的截距为2
C. 与x轴交于点(﹣2,0) D. 函数图象不经过第一象限
点A(﹣3,4)所在象限为( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
如图,抛物线y=a(x﹣m﹣1)2+2m(其中m>0)与其对称轴l相交于点P.与y轴相交于点A(0,m)连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC将△PBC绕点P逆时针旋转,使点C落在抛物线上,设点C、B的对应点分别是点B′和C′.
(1)当m=1时,该抛物线的解析式为: .
(2)求证:∠BCA=∠CAO;
(3)试问:BB′+BC﹣BC′是否存在最小值?若存在,求此时实数m的值,若不存在,请说明理由.
如图,AB为⊙O的直径,且AB=m(m为常数),点C为的中点,点D为圆上一动点,过A点作⊙O的切线交BD的延长线于点P,弦CD交AB于点E.
(1)当DC⊥AB时,则= ;
(2)①当点D在上移动时,试探究线段DA,DB,DC之间的数量关系;并说明理由;
②设CD长为t,求△ADB的面积S与t的函数关系式;
(3)当时,求的值.
已知:如图,BC为⊙O的弦,点A为⊙O上一个动点,△OBC的周长为16.过C作CD∥AB交⊙O于D,BD与AC相交于点P,过点P作PQ∥AB交于Q,设∠A的度数为α.
(1)如图1,求∠COB的度数(用含α的式子表示);
(2)如图2,若∠ABC=90°时,AB=8,求阴影部分面积(用含α的式子表示);
(3)如图1,当PQ=2,求的值.
如图,已知:AB为⊙O直径,PQ与⊙O交于点C,AD⊥PQ于点D,且AC为∠DAB的平分线,BE⊥PQ于点E.
(1)求证:PQ与⊙O相切;
(2)求证:点C是DE的中点.