如图,AB是⊙O的直径,半径OC⊥AB,过OC的中点D作弦EF∥AB.
(1)求∠ABE的度数;
(2)若DE=2,求⊙O的半径.
体育课上,小明、小强、小华三人在足球场上练习足球传球,足球从一个人传到另一个人记为踢一次.如果从小强开始踢,经过两次踢球后,足球踢到小华处的概率是多少?经过三次踢球后,足球踢回到小强处的概率呢?(列表或画树形图或列举)
解方程:
(1)3x2﹣7x+4=0
(2)x2+2x﹣10=0
如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=(k≠0)的图象恰好经过A′,B,则k的值为_____.
在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(4,1),直线l:y=x+b与图象G交于点B,与y轴交于点C.我们把横、纵坐标都是整数的点叫做整数点,记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W,若b=﹣2,则区域W内的整数点的个数为_____;
如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3…如此进行下去,则C2019的顶点坐标是_____.