已知一元二次方程x2+(2m+1)x+m2﹣1=0.
(1)若方程有两个不相等的实数根,试求m的取值范围;
(2)若抛物线y=x2+(2m+1)x+m2﹣1与直线y=x+m没有交点,试求m的取值范围;
(3)求证:不论m取何值,抛物线y=x2+(2m+1)x+m2﹣1图象的顶点都在一条定直线上.
阅读理【解析】
如图(1),在平面直角坐标系xOy中,已知点A的坐标是(1,2),点B的坐标是(3,4),过点A、点B作平行于x轴、y轴的直线相交于点C,得到Rt△ABC,由勾股定理可得,线段AB=.
得出结论:
(1)若A点的坐标为(x1,y1),B点的坐标为(x2,y2)请你直接用A、B两点的坐标表示A、B两点间的距离;
应用结论:
(2)若点P在y轴上运动,试求当PA=PB时,点P的坐标.
(3)如图(2)若双曲线L1:y=(x>0)经过A(1,2)点,将线段OA绕点O旋转,使点A恰好落在双曲线L2:y=﹣(x>0)上的点D处,试求A、D两点间的距离.
如图,AB是⊙O的直径,半径OC⊥AB,过OC的中点D作弦EF∥AB.
(1)求∠ABE的度数;
(2)若DE=2,求⊙O的半径.
体育课上,小明、小强、小华三人在足球场上练习足球传球,足球从一个人传到另一个人记为踢一次.如果从小强开始踢,经过两次踢球后,足球踢到小华处的概率是多少?经过三次踢球后,足球踢回到小强处的概率呢?(列表或画树形图或列举)
解方程:
(1)3x2﹣7x+4=0
(2)x2+2x﹣10=0
如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=(k≠0)的图象恰好经过A′,B,则k的值为_____.