满分5 > 初中数学试题 >

已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0...

已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=

(1)求点A的坐标;

(2)点E在y轴负半轴上,直线ECAB,交线段AB于点C,交x轴于点D,SDOE=16.若反比例函数y=的图象经过点C,求k的值;

(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

 

(1)(-8,0)(2)k=- (3)(﹣1,3)或(0,2)或(0,6)或(2,6) 【解析】 (1)解方程求出OB的长,解直角三角形求出OA即可解决问题; (2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可; (3)分四种情形分别求解即可解决问题; (1)∵线段OB的长是方程x2﹣2x﹣8=0的解, ∴OB=4, 在Rt△AOB中,tan∠BAO=, ∴OA=8, ∴A(﹣8,0). (2)∵EC⊥AB, ∴∠ACD=∠AOB=∠DOE=90°, ∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°, ∵∠ADC=∠ODE, ∴∠OAB=∠DEO, ∴△AOB∽△EOD, ∴, ∴OE:OD=OA:OB=2,设OD=m,则OE=2m, ∵•m•2m=16, ∴m=4或﹣4(舍弃), ∴D(﹣4,0),E(0,﹣8), ∴直线DE的解析式为y=﹣2x﹣8, ∵A(﹣8,0),B(0,4), ∴直线AB的解析式为y=x+4, 由 ,解得 , ∴C(,), ∵若反比例函数y=的图象经过点C, ∴k=﹣. (3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4, ∴∠OBD=∠ODB=45°, ∴∠PNB=∠ONM=45°, ∴OM=DM=ON=2, ∴BN=2,PB=PN=, ∴P(﹣1,3). 如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2); 如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P(0,6) 如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6). 综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);
复制答案
考点分析:
相关试题推荐

为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB60米,坡角(即∠BAC)45°,BCAC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号)

(1)若修建的斜坡BE的坡比为1,求休闲平台DE的长是多少米?

(2)一座建筑物GH距离A33米远(AG33),小亮在D点测得建筑物顶部H的仰角(即∠HDM)30°.点BCAGH在同一个平面内,点CAG在同一条直线上,且HGCG,问建筑物GH高为多少米?

 

查看答案

如图,在矩形ABCD中,AB16cmBC6cm,点PA点出发沿AB5cm/s的速度向点B移动,一直到达点B为止;同时,点QC点出发沿CD3cm/s的速度向点D移动,经过多长时间PQ两点之间的距离为10cm

 

查看答案

如图,在正方形ABCD中,点M是边BC上的一点(不与BC重合),点NCD边的延长线上,且满足∠MAN90°,联结MNACN与边AD交于点E

1)求证;AMAN

2)如果∠CAD2NAD,求证:AM2ACAE

 

查看答案

2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.

(1)求甲选择A部电影的概率;

(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)

 

查看答案

画出下列几何体的三种视图.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.