满分5 > 初中数学试题 >

(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次...

10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.

1)请用配方法求二次函数图象的最高点P的坐标;

2)小球的落点是A,求点A的坐标;

3)连接抛物线的最高点P与点OA△POA,求△POA的面积;

4)在OA上方的抛物线上存在一点MMP不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.

 

(1)(2,4);(2)(,);(3);(4)(,). 【解析】 试题(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标; (2)联立两解析式,可求出交点A的坐标; (3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解; (4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标. 试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4, 故二次函数图象的最高点P的坐标为(2,4); (2)联立两解析式可得:,解得:,或. 故可得点A的坐标为(,); (3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B. S△POA=S△POQ+S△梯形PQBA﹣S△BOA =×2×4+×(+4)×(﹣2)﹣×× =4+﹣ =; (4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积. 设直线PM的解析式为y=x+b, ∵P的坐标为(2,4), ∴4=×2+b,解得b=3, ∴直线PM的解析式为y=x+3. 由,解得,, ∴点M的坐标为(,).
复制答案
考点分析:
相关试题推荐

已知y是关于x的函数,如果能在其函数图象上能找到横坐标与纵坐标相同的一个点Ptt),则称点P为函数图象上的郡点.例如:直线y=2x-1上存在郡点”P11).

1)直线y=3x-4的郡点是______;双曲线y=上的郡点是______

2)若抛物线y=x2+5x-5上有郡点,且郡点”AB(点AB可重合)的坐标分别为(x1y1),(x2y2),求x12+x22的值.

 

查看答案

如图,AB是半圆O的直径,C是半圆上一点,DHAB于点HAC分别交BDDHEF

1)已知AB10AD6,求AH

2)求证:DFEF

 

查看答案

如图,长沙九龙仓国际金融中心主楼BC高达452m,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼DE340m,为了测量高楼BC上发射塔AB的高度,在楼DE底端D点测得A的仰角为α,在顶端E点测得A的仰角∠AEF=45°

1)若设ABx米,请用含x的代数式表示AF的长.

2)求出发射塔AB的高度.(cosα≈sinα≈tanα≈

 

查看答案

如图,四边形ACEF为正方形,以AC为斜边作RtABC,∠B=90°AB=4BC=2,延长BC至点D,使CD=5,连接DE

1)求正方形的边长;

2)求DE的长.

 

查看答案

自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:

使用次数

0

1

2

3

4

5(含5次以上)

累计车费

0

0.5

0.9

1.5

同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:

使用次数

0

1

2

3

4

5

人数

5

15

10

30

25

15

)写出的值;

)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利? 说明理由.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.