若反比例函数的图象经过点,则该反比例函数的图象在( )
A. 第一、三象限 B. 第一、四象限
C. 第二、三象限 D. 第二、四象限
下列图案中,是中心对称图形的是( )
A. B. C. D.
(一)问题提出:如何把n个边长为1的正方形,剪拼成一个大正方形?
(二)解决方法
探究一:若n是完全平方数,我们不用剪切小正方形,可直接将小正方形拼成一个大正方形,如图(1),用四个边长为1的小正方形可以拼成一个大正方形.
问题1:请用9个边长为1的小正方形在图(2)的位置拼成一个大正方形.
探究二:若n=2,5,10,13等这些数,都可以用两个正整数的平方和来表示,以n=5为例,用5个边长为1的小正方形剪拼成一个大正方形.
(1)计算:拼成的大正方形的面积为5,边长为,可表示成;
(2)剪切:如图(3)将5个小正方形按如图所示分成5部分,虚线为剪切线;
(3)拼图:以图(3)中的虚线为边,拼成一个边长为的大正方形,如图(4).
问题2:请仿照上面的研究方式,用13个边长为1的小正方形剪拼成一个大正方形;
(1)计算:拼成的大正方形的面积为____,边长为_____,可表示成____;
(2)剪切:请仿照图(3)的方法,在图(5)的位置画出图形.
(3)拼图:请仿照图(4)的方法,在图(6)的位置出拼成的图.
A,B两地相距100千米,甲,乙两人骑车分别从A,B两地相向而行,图中和分别表示他们各自到A地的距离千米与时间小时的关系,根据图中提供的信息,解答下列问题:
图中哪条线表示甲到A地的距离与时间的关系?
甲,乙两人的速度分别是多少?
求P点的坐标,并解释P点的实际意义.
甲出发多长时间后,两人相距30千米?
如图,,求证:.
某水果店计划进A,B两种水果共140千克,这两种水果的进价和售价如表所示
| 进价 | 售价 |
A种水果 | 5 | 8 |
B种水果 | 9 | 13 |
若该水果店购进这两种水果共花费1020元,求该水果店分别购进A,B两种水果各多少千克?
在的基础上,为了迎接春节的来临,水果店老板决定把A种水果全部八折出售,B种水果全部降价出售,那么售完后共获利多少元?