满分5 > 初中数学试题 >

如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x...

如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过AABx轴,截取AB=OA(BA右侧),连接OB,交反比例函数y=的图象于点P.

(1)求反比例函数y=的表达式;

(2)求点B的坐标;

(3)求OAP的面积.

 

(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)△OAP的面积=5. 【解析】(1)将点A的坐标代入解析式求解可得; (2)利用勾股定理求得AB=OA=5,由AB∥x轴即可得点B的坐标; (3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得. (1)将点A(4,3)代入y=,得:k=12, 则反比例函数解析式为y=; (2)如图,过点A作AC⊥x轴于点C, 则OC=4、AC=3, ∴OA==5, ∵AB∥x轴,且AB=OA=5, ∴点B的坐标为(9,3); (3)∵点B坐标为(9,3), ∴OB所在直线解析式为y=x, 由可得点P坐标为(6,2),(负值舍去), 过点P作PD⊥x轴,延长DP交AB于点E, 则点E坐标为(6,3), ∴AE=2、PE=1、PD=2, 则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.
复制答案
考点分析:
相关试题推荐

某大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米, ≈1.73)

 

查看答案

如图,点M是正方形ABCDCD上一点,连接AM,作DEAM于点E,BFAM于点F,连接BE.

(1)求证:AE=BF;

(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.

 

查看答案

现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.

(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;

(2)求乙投放的两袋垃圾不同类的概率.

 

查看答案

已知关于的一元二次方程.

(1)若该方程有两个实数根,求的最小整数值;

(2)若方程的两个实数根为,且,求的值.

 

查看答案

将抛物线向左平移2个单位,再向下平移5个单位,得到抛物线,则_________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.