满分5 > 初中数学试题 >

如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平...

如图,抛物线y=x2+bx+cy轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.

(1)求此抛物线的解析式.

(2)点Px轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.

 

(1)抛物线的解析式为y=x2+4x+2;(2)P的坐标为(﹣6,0)或(﹣13,0). 【解析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式; (2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标. (1)由题意得:x=﹣=﹣=﹣2,c=2, 解得:b=4,c=2, 则此抛物线的解析式为y=x2+4x+2; (2)∵抛物线对称轴为直线x=﹣2,BC=6, ∴B横坐标为﹣5,C横坐标为1, 把x=1代入抛物线解析式得:y=7, ∴B(﹣5,7),C(1,7), 设直线AB解析式为y=kx+2, 把B坐标代入得:k=﹣1,即y=﹣x+2, 作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M, 可得△AQH∽△ABM, ∴, ∵点P在x轴上,直线CP将△ABC面积分成2:3两部分, ∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5, ∵BM=5, ∴QH=2或QH=3, 当QH=2时,把x=﹣2代入直线AB解析式得:y=4, 此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0); 当QH=3时,把x=﹣3代入直线AB解析式得:y=5, 此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P(﹣13,0), 综上,P的坐标为(﹣6,0)或(﹣13,0).
复制答案
考点分析:
相关试题推荐

根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润(千元)与进货量(吨)近似满足函数关系,乙种水果的销售利润(千元)与进货量(吨)之间的函数的图像如图所示.

(1)求出之间的函数关系式;

(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为吨,写出这两种水果所获得的销售利润之和(千元)与(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?

 

查看答案

如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过AABx轴,截取AB=OA(BA右侧),连接OB,交反比例函数y=的图象于点P.

(1)求反比例函数y=的表达式;

(2)求点B的坐标;

(3)求OAP的面积.

 

查看答案

某大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米, ≈1.73)

 

查看答案

如图,点M是正方形ABCDCD上一点,连接AM,作DEAM于点E,BFAM于点F,连接BE.

(1)求证:AE=BF;

(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.

 

查看答案

现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.

(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;

(2)求乙投放的两袋垃圾不同类的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.