下列点中,一定在二次函数y=x2﹣1图象上的是( )
A. (0,0) B. (1,1) C. (1,0) D. (0,1)
如图,半圆O的直径,在中,,,,半圆O以的速度从左向右运动,在运动过程中,点D、E始终在直线BC上,设运动时间为,当时,半圆O在的左侧,.
如图1当时,圆心O到AB所在直线的距离是______cm.
当t为何值时,的边AB所在的直线与半圆O所在圆相切?求时间t.
如图2,线段AB的中点为F,求圆心O与B、F两点构成以BF为腰的等腰三角形时运动的时间t.
在图2的基础上,建立如图所示的平面直角坐标系,四边形ACBG是矩形,如图3,半圆O向右运动的同时矩形也向右运动,速度为,问经过多长时间O、F、G在同一条直线上,求时间并求出此时DG的直线解析式.
如图,在中,,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使,连接FB,FC.
求证:四边形ABFC是菱形;
若,,求半圆和菱形ABFC的面积.
只用一把无刻度的直尺,作出菱形AB上的高CH.
某水产店每天购进一种高档海鲜500千克,预计每千克盈利10元,当天可全部售完,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克当天剩余的海鲜全部以每千克盈利5元的价格卖给某饭店,如果该水产店要保证当天盈利6500元,那么每千克应涨价多少元?
如图,AB为的直径,点D在上,于H,现将沿AD翻折得到,AE交于点C,连接OC交AD于点G.
求证:DE与相切;
若,,连接BD,请写出求BD长的解题思路.
如图,是正方形ABCD与正六边形AEFCGH的外接圆.
正方形ABCD与正六边形AEFCGH的边长之比为______;
连接BE,BE是否为的内接正n边形的一边?如果是,求出n的值;如果不是,请说明理由.