满分5 > 初中数学试题 >

如图,在△ABC中,AB=7.5,AC=9,S△ABC=.动点P从A点出发,沿A...

如图,在ABC中,AB=7.5,AC=9,SABC=.动点PA点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点QC点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正PQM(P、Q、M按逆时针排序),以QC为边在AC上方作正QCN,设点P运动时间为t秒.

(1)求cosA的值;

(2)当PQMQCN的面积满足SPQM=SQCN时,求t的值;

(3)当t为何值时,PQM的某个顶点(Q点除外)落在QCN的边上.

 

(1)coaA=;(2)当t=时,满足S△PQM=S△QCN;(3)当t=s或s时,△PQM的某个顶点(Q点除外)落在△QCN的边上. 【解析】(1)如图1中,作BE⊥AC于E.利用三角形的面积公式求出BE,利用勾股定理求出AE即可解决问题; (2)如图2中,作PH⊥AC于H.利用S△PQM=S△QCN构建方程即可解决问题; (3)分两种情形①如图3中,当点M落在QN上时,作PH⊥AC于H.②如图4中,当点M在CQ上时,作PH⊥AC于H.分别构建方程求解即可; (1)如图1中,作BE⊥AC于E. ∵S△ABC=•AC•BE=, ∴BE=, 在Rt△ABE中,AE=, ∴coaA=. (2)如图2中,作PH⊥AC于H. ∵PA=5t,PH=3t,AH=4t,HQ=AC-AH-CQ=9-9t, ∴PQ2=PH2+HQ2=9t2+(9-9t)2, ∵S△PQM=S△QCN, ∴•PQ2=•CQ2, ∴9t2+(9-9t)2=×(5t)2, 整理得:5t2-18t+9=0, 解得t=3(舍弃)或. ∴当t=时,满足S△PQM=S△QCN. (3)①如图3中,当点M落在QN上时,作PH⊥AC于H. 易知:PM∥AC, ∴∠MPQ=∠PQH=60°, ∴PH=HQ, ∴3t=(9-9t), ∴t=. ②如图4中,当点M在CQ上时,作PH⊥AC于H. 同法可得PH=QH, ∴3t=(9t-9), ∴t=, 综上所述,当t=s或s时,△PQM的某个顶点(Q点除外)落在△QCN的边上.
复制答案
考点分析:
相关试题推荐

如图,以AB为直径的⊙O外接于ABC,过A点的切线APBC的延长线交于点PAPB的平分线分别交ABAC于点DE,其中AEBDAEBD)的长是一元二次方程x2﹣5x+6=0的两个实数根.

(1)求证:PABD=PBAE

(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.

 

查看答案

如图,某塔观光层的最外沿点E为蹦极项目的起跳点,已知点E离塔的中轴线AB的距离OE10米,塔高AB123(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到1米,参考数据≈1.4,≈1.7)

 

查看答案

如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.

(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;

(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).

 

查看答案

计算题:

1)先化简,再求值:(mn÷m2,其中mn

2)计算:2sin30°﹣(π0+|1|+1

 

查看答案

如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由DAM平移得到.若过点E作EHAC,H为垂足,则有以下结论:点M位置变化,使得DHC=60°时,2BE=DM;无论点M运动到何处,都有DM=HM;③无论点M运动到何处,CHM一定大于135°.其中正确结论的序号为_____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.