如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于( )
A. 100° B. 80° C. 60° D. 40°
如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )
A. OA=OC,OB=OD
B. ∠BAD=∠BCD,AB∥CD
C. AD∥BC,AD=BC
D. AB=CD,AO=CO
要使 在实数范围内有意义,则( )
A. x为任何值 B. x≤﹣ C. x≥ D. x≥﹣
下列二次根式中最简二次根式是( )
A. B. C. D.
阅读下面文字,根据所给信息解答下面问题:把几个数用大括号括起来,中间用逗号隔开,如:{3,4};{﹣3,6,8,18},其中大括号内的数称其为集合的元素.如果一个集合满足:只要其中有一个元素a,使得﹣2a+4也是这个集合的元素,这样的集合称为条件集合.例如;{3,﹣2},因为﹣2×3+4=﹣2,﹣2恰好是这个集合的元素所以吕{3,﹣2}是条件集合:例如;(﹣2,9,8,},因为﹣2×(﹣2)+4=8,8恰好是这个集合的元素,所以{﹣2,9,8,}是条件集合.
(1)集合{﹣4,12}是否是条件集合?
(2)集合{,﹣,}是否是条件集合?
(3)若集合{8,n}和{m}都是条件集合.求m、n的值.
定义正整数m,n的运算,m△n=
例2△3=,3△4=
(1)3△2的值为 运算符号“△”满足交换律吗?回答 (填“是”或者“否”)
(2)探究:计算2△10=的值.
为解决上面的问题,我们运用数形结合的思想方法,通过不断的分割一个面积为1的正方形,把数量关系和几何图形结合起来,最终解决问题.
如图所示,第1次分割把正方形的面积二等分,其中阴影部分的面积为,第2次,把上次分割图中空白部分的面积继续二等分,阴影分的面积之和为,第3次分割把上次分割图中空白部分的面积继续二等分……以此类推……第10次分割,把第9次分割后的图中的空日部分的面积最后二等分,所有阴影部分面积之和为.
根据第10次分割图可以得出计结果:=1﹣,进一步分析可得出=1﹣,
(3)已知n是正整数,计算3×(4△n)=的结果.
按指定方法解决问题请仿照以上做法,只需画出第n次分割图并作标注,写出最终结果的推理步骤,或借用以上结论进行推理,写出必要的步骤.