在数轴上点M表示的数为,与点M距离等于3个单位长度的点表示的数为
A. 1 B. C. 或1 D. 或5
如图,已知点的坐标是,点的坐标是,以线段为直径作⊙,交轴的正半轴于点,过、、三点作抛物线.
(1)求抛物线的解析式;
(2)连结,,点是延长线上一点,的角平分线交⊙于点,连结,在直线上找一点,使得的周长最小,并求出此时点的坐标;
(3)在(2)的条件下,抛物线上是否存在点,使得,若存在,请直接写出点的坐标;若不存在,请说明理由.
元旦前夕,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人小丁第天生产的粽子数量为只,与满足如下关系:
(1)小丁第几天生产的粽子数量为280只?
(2)如图,设第天生产的每只粽子的成本是元,与之间的关系可用图中的函数图象来刻画.若小丁第天创造的利润为元,求与之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)
如图,在中,,是上任意一点.
(1)过三点作⊙,交线段于点(要求尺规作图,不写作法,但要保留作图痕迹);
(2)若弧DE=弧DB,求证:是⊙的直径.
在学习概率的课堂上,老师提出的问题:只有一张电影票,小丽和小芳想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小丽和小芳都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小丽先抽一张,小芳从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小丽看电影,否则小芳看电影.
(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;
(2)乙同学将甲同学的方案修改为只用2、3、5、7四张牌,抽取方式及规则不变,乙的方案公平吗?并说明理由.
周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽.测量时,他们选择河对岸边的一棵大树,将其底部作为点,在他们所在的岸边选择了点,使得与河岸垂直,并在点竖起标杆,再在的延长线上选择点竖起标杆,使得点与点,共线.
已知:,,测得,,.测量示意图如图所示.请根据相关测量信息,求河宽.