满分5 > 初中数学试题 >

如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m...

如图1B2m0),C3m0)是平面直角坐标系中两点,其中m为常数,且m0E0n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°△A′D′C′,连接ED′,抛物线)过EA′两点.

1)填空:∠AOB=       °,用m表示点A′的坐标:A′            );

2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE△ABC是否相似?说明理由;

3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过MMN⊥y轴,垂足为N

abm满足的关系式;

m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.

 

(1)45;(m,﹣m);(2)相似;(3)①;②. 【解析】 试题(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A′坐标; (2)△D′OE∽△ABC.表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A′,表示出抛物线解析式,把点E坐标代入即可得到m与n的关系式,利用三角形相似即可得证; (3)①当E与原点重合时,把A与E坐标代入,整理即可得到a,b,m的关系式; ②抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围. 试题解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为:45;m,﹣m; (2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为,∵抛物线过点E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC; (3)①当点E与点O重合时,E(0,0),∵抛物线过点E,A,∴,整理得:,即; ②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=; 若抛物线过点A(2m,2m),则,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a的范围为.
复制答案
考点分析:
相关试题推荐

如图,点O为矩形ABCD的对称中心,AB5cmBC6cm,点EFG分别从ABC三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,EBF关于直线EF的对称图形是EBF.设点EFG运动的时间为t(单位:s).

1)当t等于多少s时,四边形EBFB为正方形;

2)若以点EBF为顶点的三角形与以点FCG为顶点的三角形相似,求t的值;

3)是否存在实数t,使得点B与点O重合?若存在,求出t的值;若不存在,请说明理由.

 

查看答案

如图,在平面直角坐标系中,反比例函数(x>0,k>0)的图象经过点A12),Bmn)(m1),过点By轴的垂线,垂足为C

1)求该反比例函数解析式;

2)当ABC面积为2时,求直线AB的函数解析式.

 

查看答案

已知,内接于,点是弧的中点,连接

1)如图1,若,求证:

2)如图2,若平分,求证:

3)在(2)的条件下,若,求的值.

 

查看答案

每年的65日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.

(1)求甲、乙两种型号设备的价格;

(2)该公司经决定购买甲型设备不少于3台,预算购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;

(3)在(2)的条件下,已知甲型设备每月的产量为240吨,乙型设备每月的产量为180吨.若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.

 

查看答案

朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展朗读比赛活动,九年级班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩满分为100如图所示.

 

平均数

中位数

众数

85

 

85

 

80

 

 

 

根据图示填写表格;

结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;

如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.