如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,
(1)证明:△ABD≌△BCE;
(2)证明:△ABE∽△FAE;
(3)若AF=7,DF=1,求BD的长.
已知直线y=﹣2x+1与y轴交于点A,与反比例函数y=(k为常数)的图象有一个交点B的纵坐标是5.
(Ⅰ)求反比例函数的解析式,并说明其图象所在的象限;
(Ⅱ)当2<x<5时,求反比例函数的函数值y的取值范围;
(Ⅲ)求△AOB的面积S.
一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.
(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;
(Ⅱ)求两次取出的小球标号相同的概率;
(Ⅲ)求两次取出的小球标号的和大于6的概率.
已知关于x的一元二次方程x2+x+m﹣1=0.
(1)当m=0时,求方程的实数根.
(2)若方程有两个不相等的实数根,求实数m的取值范围.
如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于点D,则BC的长为_____,CD的长_____.
二次函数y=ax2+4x+a的最大值是3,则a的值是_____.