满分5 > 初中数学试题 >

如图,∠ABC=∠ACB,AD、BD、CD分别平分∠EAC、∠ABC、∠ACF,...

如图,∠ABC=∠ACB,AD、BD、CD分别平分∠EAC、∠ABC、∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC,其中正确的结论有______填序号

 

①②③⑤ 【解析】 根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项. ∵AD平分∠EAC, ∴∠EAC=2∠EAD, ∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB, ∴∠EAD=∠ABC, ∴AD∥BC,∴①正确; ∵AD∥BC, ∴∠ADB=∠DBC, ∵BD平分∠ABC,∠ABC=∠ACB, ∴∠ABC=∠ACB=2∠DBC, ∴∠ACB=2∠ADB,∴②正确; ∵AD平分∠EAC,CD平分∠ACF, ∴∠DAC=∠EAC,∠DCA=∠ACF, ∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°, ∴∠ADC=180°-(∠DAC+∠ACD) =180°-(∠EAC+∠ACF) =180°-(∠ABC+∠ACB+∠ABC+∠BAC) =180°-(180°-∠ABC) =90°-∠ABC,∴③正确; ∵BD平分∠ABC, ∴∠ABD=∠DBC, ∵∠ADB=∠DBC,∠ADC=90°-∠ABC, ∴∠ADB不等于∠CDB,∴④错误; ∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC, ∴∠BAC=2∠BDC,∴⑤正确; 即正确的有①②③⑤, 故答案为:①②③⑤.
复制答案
考点分析:
相关试题推荐

已知,如图,直线ab,则∠1、∠2、∠3、∠4之间的数量关系为__________________

 

查看答案

如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为     

 

查看答案

等角的余角相等改写成如果……,那么……”的形式  ____________

 

查看答案

3分)的平方根是      

 

查看答案

我们规定向东和向北方向为正,如向东走4米,向北走走6米,记为(4,6),则向西走5米,向北走3米,记为_______

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.