满分5 > 初中数学试题 >

如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB...

如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BEAB,OEADBEE点,连接AE、DE、AECDF点.

(1)求证:DE为⊙O切线;

(2)若⊙O的半径为3,sinADP=,求AD;

(3)请猜想PFFD的数量关系,并加以证明.

 

(1)证明见解析;(2)2;(3)PF=FD,证明见解析. 【解析】(1)如图1,连接OD、BD,根据圆周角定理得:∠ADB=90°,则AD⊥BD,OE⊥BD,由垂径定理得:BM=DM,证明△BOE≌△DOE,则∠ODE=∠OBE=90°,可得结论; (2)设AP=a,根据三角函数得:AD=3a,由勾股定理得:PD=2a,在直角△OPD中,根据勾股定理列方程可得:32=(3-a)2+(2a)2,解出a的值可得AD的值; (3)先证明△APF∽△ABE,得,由△ADP∽△OEB,得,可得PD=2PF,可得结论. 详证明:(1)如图1,连接OD、BD,BD交OE于M, ∵AB是⊙O的直径, ∴∠ADB=90°,AD⊥BD, ∵OE∥AD, ∴OE⊥BD, ∴BM=DM, ∵OB=OD, ∴∠BOM=∠DOM, ∵OE=OE, ∴△BOE≌△DOE(SAS), ∴∠ODE=∠OBE=90°, ∴DE为⊙O切线; (2)设AP=a, ∵sin∠ADP=, ∴AD=3a, ∴PD=, ∵OP=3-a, ∴OD2=OP2+PD2, ∴32=(3-a)2+(2a)2, 9=9-6a+a2+8a2, a1=,a2=0(舍), 当a=时,AD=3a=2, ∴AD=2; (3)PF=FD, 理由是:∵∠APD=∠ABE=90°,∠PAD=∠BAE, ∴△APF∽△ABE, ∴, ∴PF=, ∵OE∥AD, ∴∠BOE=∠PAD, ∵∠OBE=∠APD=90°, ∴△ADP∽△OEB, ∴, ∴PD=, ∵AB=2OB, ∴PD=2PF, ∴PF=FD.
复制答案
考点分析:
相关试题推荐

如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得CA的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.

1MN是否穿过原始森林保护区,为什么?(参考数据:1.732

2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?

 

查看答案

某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3A型空调和2B型空调,需费用39000元;4A型空调比5B型空调的费用多6000元.

(1)求A型空调和B型空调每台各需多少元;

(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?

(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?

 

查看答案

如图,在ABCD中,分别以边BC,CD作等腰△BCF,CDE,使BC=BF,CD=DE,CBF=CDE,连接AF,AE.

(1)求证:△ABF≌△EDA;

(2)延长ABCF相交于G,若AFAE,求证BFBC.

 

查看答案

为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:

(1)a=     ,b=     ,c=     

(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为     度;

(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.

 

查看答案

1)计算:

2)先化简,再求值: ,其中

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.