满分5 > 初中数学试题 >

2017年5月12日,利用微软Windows漏洞爆发的wannaCry勒索病毒,...

2017年5月12日,利用微软Windows漏洞爆发的wannaCry勒索病毒,目前已席卷全球150多个国家,至少30万台电脑中招,预计造成的经济损失将达到80亿美元,世人再次领教了黑客的厉害,将数据80亿用科学记数法表示为(  )

A. 8×108    B. 8×109    C. 0.8×109    D. 0.8×1010

 

B 【解析】由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.因此80亿=8×109.
复制答案
考点分析:
相关试题推荐

﹣(﹣3)的绝对值是(  )

A. 3 B.  C. 3 D.

 

查看答案

如图,已知直线分别交轴、轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC 轴于点C,交抛物线于点D.

(1)若抛物线的解析式为,设其顶点为M,其对称轴交AB于点N.

①求点M、N的坐标;

②是否存在点P,使四边形MNPD为菱形?并说明理由;

(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.

 

查看答案

如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BEAB,OEADBEE点,连接AE、DE、AECDF点.

(1)求证:DE为⊙O切线;

(2)若⊙O的半径为3,sinADP=,求AD;

(3)请猜想PFFD的数量关系,并加以证明.

 

查看答案

如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得CA的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.

1MN是否穿过原始森林保护区,为什么?(参考数据:1.732

2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?

 

查看答案

某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3A型空调和2B型空调,需费用39000元;4A型空调比5B型空调的费用多6000元.

(1)求A型空调和B型空调每台各需多少元;

(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?

(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.