下列事件是必然事件的是( )
A. 打开电视机,正在播放动画片
B. 在一只装有5个红球的袋中摸出1球,一定是红球
C. 某彩票中奖率是,买100张一定会中奖
D. 2018年世界杯德国队一定能夺得冠军
绝对值大于3且小于6的所有整数的和是( )
A. 0 B. 9 C. 18 D. 27
等于( )
A. B. 2 C. D. -2
如图,在平面直角坐标系中,抛物线与轴交于、两点(点在点左侧),经过点的直线:与轴交于点,与抛物线的另一个交点为,且.
(1)直接写出点的坐标,并用含的式子表示直线的函数表达式(其中、用含的式子表示).
(2)点为直线下方抛物线上一点,当的面积的最大值为时,求抛物线的函数表达式;
(3)设点是抛物线对称轴上的一点,点在抛物线上,以点、、、为顶点的四边形能否为矩形?若能,求出点的坐标;若不能,请说明理由.
如图在平面直角坐标系中,四边形是菱形,点的坐标为,平行于对角线的直线从原点出发,沿轴正方向以每秒1个单位长度的速度运动,设直线与菱形的两边分别交于点、,直线运动的时间为(秒).
(1)求点的坐标;
(2)当时,求的值;
(3)设的面积为,求与的函数表达式,并确定的最大值.
为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?