满分5 > 初中数学试题 >

为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是...

为满足市场需求,某超市在五月初五端午节来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.

1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;

2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?

3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?

 

(1)y=﹣20x+1600; (2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元; (3)超市每天至少销售粽子440盒. 【解析】 试题(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式; (2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答; (3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解. 试题解析:(1)由题意得,==; (2)P===,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元; (3)由题意,得=6000,解得,,∵抛物线P=的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.
复制答案
考点分析:
相关试题推荐

有甲、乙两个不透明的布袋,甲袋中只装有3个除标号外完全相同的小球,分别标有数字012;乙袋中只装有3个除标号外完全相同的小球,分别标有数字﹣1,﹣20;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,由此确定点M坐标为(xy).

1)写出点M所有可能的坐标;

2)求点Mxy)在函数y=﹣x+1的图象上的概率.

 

查看答案

如图,一次函数yx+m与反比例函数y的图象相交于A21),B两点.

1)求mk的值;

2)不解关于xy的方程组,直接写出点B的坐标;

3)看图象直接写出,x+m时,自变量x的取值范围.

 

查看答案

某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A39.546.5B46.553.5C53.560.5D60.567.5E67.574.5),并依据统计数据绘制了如下两幅尚不完整的统计图.

解答下列问题:

1)这次抽样调查的样本容量是             ,并补全频数分布直方图;

2C组学生的频率为     ,在扇形统计图中D组的圆心角是          度;

3)请你估计该校初三年级体重超过60kg的学生大约有多少名?

 

查看答案

已知多项式A2x2+2xy+my8B=﹣nx2+xy+y+7A2B中不含有x2项和y项,求m+n的值.

 

查看答案

先化简,再求值:(1)÷,其中a+1

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.