满分5 > 初中数学试题 >

解方程: (1)x2+8x=9 (2)(x-1)2=2x(1-x)

解方程:

1x2+8x=9

2)(x-12=2x1-x

 

(1)x1=-9,x2=1;(2)x1=1,x2=. 【解析】 (1)移项后因式分解即可; (2)移项后因式分解即可. (1)x2+8x=9,x2+8x-9=0,(x+9)(x-1)=0,x+9=0,x-1=0,∴x1=-9,x2=1; (2)(x-1)2=2x(1-x),(x-1)2+2x(x-1)=0,(x-1)(x-1+2x)=0,x-1=0,x-1+2x=0,∴x1=1,x2=.
复制答案
考点分析:
相关试题推荐

计算:

1)(-4-3-2

2)(3+2)(3-2

 

查看答案

我市某企业为节约用水,自建污水净化站.7月份净化污水3 000吨,9月份增加到3 630吨,则这两个月净化的污水量平均每月增长的百分率为  

 

查看答案

计算:_____________________

 

查看答案

在平面直角坐标系xOy中有一点,过该点分别作x轴和y轴的垂线,垂足分别是AB,若由该点、原点O以及两个垂足所组成的长方形的周长与面积的数值相等,则我们把该点叫做平面直角坐标系中的平衡点.

请判断下列各点中是平面直角坐标系中的平衡点的是______填序号

.

若在第一象限中有一个平衡点恰好在一次函数为常数的图象上.

mb的值;

一次函数为常数y轴交于点C,问:在这函数图象上,是否存在点使,若存在,请直接写出点M的坐标;若不存在,请说明理由.

经过点,且平行于x轴的直线上有平衡点吗?若有,请求出平衡点的坐标;若没有,说明理由.

【答案】1)②;(2)①,②存在,M的坐标为;(3)没有,见解析.

【解析】

根据平衡点的定义,逐一验证AB两点是否为平衡点,此题得解;

由平衡点的定义,可得出关于m的一元一次方程,解之可求出m的值,再利用一次函数图象上点的坐标特征可求出b值;

存在,设设点M的坐标为,利用三角形的面积公式结合,可得出关于x的含绝对值符号的一元一次方程,解之即可得出x的值,再将其代入点M的坐标中即可求出结论;

没有,设平衡点的坐标为,利用平衡点的定义可得出,即,由,可得出:经过点,且平行于x轴的直线上没有平衡点.

【解析】

不是平衡点;

是平衡点.

故答案为:

为平衡点,且在第一象限,

解得:

N的坐标为

在一次函数为常数的图象上,

解得:

存在,设点M的坐标为

,即

解得:

M的坐标为

没有,理由如下:

设平衡点的坐标为

,即

经过点,且平行于x轴的直线上没有平衡点.

【点睛】

本题考查了长方形的周长、长方形的面积、解一元一次方程、一次函数图象上点的坐标特征、三角形的面积以及解含绝对值符号的一元一次方程,解题的关键是:利用平衡点的定义逐一验证点AB是否为平衡点;利用平衡点的定义及一次函数图象上点的坐标特征,求出mb的值;利用三角形的面积公式结合,找出关于x的含绝对值符号的一元一次方程;利用平衡点的定义找出

型】解答
束】
24

直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动。

(1)如图1,已知AEBE分别是∠BAO和∠ABO的角平分线,点AB在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生化,试求出∠AEB的大小;

(2)如图2AB不平行CDDECE分别平分∠ADC、∠BCDADBC分别是∠BAP和∠ABM的角平分线,ADBC的延长线交于点F,点AB在运动的过程中,∠CED的大小是否发生变化?若发生变化,请说明变化情况;若不发生变化,求出∠CED的大小;

(3)如图3,延长BAG,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于EF,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.

 

查看答案

14分)盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用(元)及节假日门票费用(元)与游客x(人)之间的函数关系如图所示.

(1)a=      ,b=     

(2)直接写出与x之间的函数关系式;

(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?

【答案】(1)6,8;(2)=;(3)A团有20人,B团有30人.

【解析】

试题(1)函数图象,用购票款数除以定价的款数,得出a的值;用第11人到20人的购票款数除以定价的款数,得出b的值;

(2)利用待定系数法求正比例函数解析式求出,分x≤10与x>10,利用待定系数法求一次函数解析式求出与x的函数关系式即可;

(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解即可.

试题解析:(1)由图象上点(10,480),得到10人的费用为480元,a=×10=6;

由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,b=×10=8;

(2)设函数图象经过点(0,0)和(10,480),=48,

0≤x≤10时,设函数图象经过点(0,0)和(10,800),=80,,x>10时,设函数图象经过点(10,800)和(20,1440),

=

(3)设A团有n人,则B团的人数为(50﹣n),当0≤n≤10时,48n+80(50﹣n)=3040,解得n=30(不符合题意舍去),当n>10时,48n+64(50﹣n)+160=3040,解得n=20,则50﹣n=50﹣20=30.

答:A团有20人,B团有30人.

考点:1.一次函数的应用;2.分段函数;3.分类讨论;4.综合题.

型】解答
束】
23

在平面直角坐标系xOy中有一点,过该点分别作x轴和y轴的垂线,垂足分别是AB,若由该点、原点O以及两个垂足所组成的长方形的周长与面积的数值相等,则我们把该点叫做平面直角坐标系中的平衡点.

请判断下列各点中是平面直角坐标系中的平衡点的是______填序号

.

若在第一象限中有一个平衡点恰好在一次函数为常数的图象上.

mb的值;

一次函数为常数y轴交于点C,问:在这函数图象上,是否存在点使,若存在,请直接写出点M的坐标;若不存在,请说明理由.

经过点,且平行于x轴的直线上有平衡点吗?若有,请求出平衡点的坐标;若没有,说明理由.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.