满分5 > 初中数学试题 >

如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边A...

如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点EEFABPQF,连接BF.

(1)求证:四边形BFEP为菱形;

(2)当点EAD边上移动时,折痕的端点P、Q也随之移动;

①当点Q与点C重合时(如图2),求菱形BFEP的边长;

②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.

 

(1)证明见解析;(2)①菱形BFEP的边长为cm;②点E在边AD上移动的最大距离为2cm. 【解析】试题(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论; (2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可; ②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案. 试题解析:【解析】 (1)∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF.又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形; (2)①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°.∵点B与点E关于PQ对称,∴CE=BC=5cm.在Rt△CDE中,DE==4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm. 在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=cm,∴菱形BFEP的边长为cm; ②当点Q与点C重合时,如图2: 点E离点A最近,由①知,此时AE=1cm; 当点P与点A重合时,如图3所示: 点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.  
复制答案
考点分析:
相关试题推荐

10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.

1)若将这种水果每斤的售价降低x元,则每天的销售量是                   斤(用含x的代数式表示);

2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?

 

查看答案

已知关于x的一元二次方程mx2﹣(m+2)x+2=0.

(1)证明:不论m为何值时,方程总有实数根;

(2)m为何整数时,方程有两个不相等的正整数根.

 

查看答案

已知关于x的一元二次方程的一个根是x=-2,求k的值以及方程的另一根.

 

查看答案

已知x=+1,y=﹣1,求下列各式的值:

(1)x2+2xy+y2

(2)x2﹣y2

 

查看答案

解方程:

1x2+8x=9

2)(x-12=2x1-x

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.