满分5 > 初中数学试题 >

如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠E...

如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.

(1)求证:CE∥GF;

(2)试判断∠AED与∠D之间的数量关系,并说明理由;

(3)若∠EHF=100°,∠D=30°,求∠AEM的度数.

 

(1)证明见解析; (2)∠AED+∠D=180°,理由见解析; (3)∠AEM=130° 【解析】(1)根据同位角相等两直线平行,可证CE∥GF; (2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数. 本题解析:(1)证明:∵∠CED=∠GHD, ∴CE∥GF (2)答:∠AED+∠D=180° 理由:∵CE∥GF, ∴∠C=∠FGD, ∵∠C=∠EFG, ∴∠FGD=∠EFG, ∴AB∥CD, ∴∠AED+∠D=180°; (3)∵∠DHG=∠EHF=100°,∠D=30°, ∴∠CGF=100°+30°=130° ∵CE∥GF,∴∠C=180°﹣130°=50° ∵AB∥CD, ∴∠AEC=50°, ∴∠AEM=180°﹣50°=130°.
复制答案
考点分析:
相关试题推荐

已知(axy=a6,(ax2÷ay=a3

(1)求xy和2x﹣y的值;

(2)求4x2+y2的值.

 

查看答案

在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.

(1)请画出平移后的△DEF,并求△DEF的面积=             

(2)若连接AD、CF,则这两条线段之间的关系是_________________;

(3)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP.

 

查看答案

解方程组:

1                     

2

 

查看答案

计算(1);(2)(﹣a23+(﹣a32﹣a2•a3

 

查看答案

先化简,再求值:x-22+2(x+2)(x-4)-(x-3)(x+3),其中x=-1.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.