满分5 > 初中数学试题 >

在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b...

在平面直角坐标系中,我们定义直线yaxa为抛物线yax2+bx+c(abc为常数,a≠0)梦想直线;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其梦想三角形

已知抛物线y=﹣x2x+2与其梦想直线交于AB两点(A在点B的左侧),与x轴负半轴交于点C

(1)填空:该抛物线的梦想直线的解析式为_____,点A的坐标为______,点B的坐标为_____

(2)如图,点M为线段CB上一动点,将△ACMAM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的梦想三角形,求点N的坐标;

(3)当点E在抛物线的对称轴上运动时,在该抛物线的梦想直线上,是否存在点F,使得以点ACEF为顶点的四边形为平行四边形?若存在,请直接写出点EF的坐标;若不存在,请说明理由.

 

(1);;;(2)N点坐标为或;(3)、或、 【解析】 试题(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B的坐标; (2)当N点在y轴上时,过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON的长,可求得N点坐标;当M点在y轴上即M点在原点时,过N作NP⊥x轴于点P,由条件可求得∠NMP=60°,在Rt△NMP中,可求得MP和NP的长,则可求得N点坐标; (3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标. (1)∵抛物线,∴其梦想直线的解析式为,联立梦想直线与抛物线解析式可得:,解得:或,∴A(﹣2,),B(1,0),故答案为:;(﹣2,);(1,0); (2)当点N在y轴上时,△AMN为梦想三角形,如图1,过A作AD⊥y轴于点D,则AD=2,在中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣2,),∴AC= =,由翻折的性质可知AN=AC=,在Rt△AND中,由勾股定理可得DN= = =3,∵OD=,∴ON=﹣3或ON=+3,当ON=+3时,则MN>OD>CM,与MN=CM矛盾,不合题意,∴N点坐标为(0,﹣3); 当M点在y轴上时,则M与O重合,过N作NP⊥x轴于点P,如图2,在Rt△AMD中,AD=2,OD=,∴tan∠DAM==,∴∠DAM=60°,∵AD∥x轴,∴∠AMC=∠DAO=60°,又由折叠可知∠NMA=∠AMC=60°,∴∠NMP=60°,且MN=CM=3,∴MP=MN=,NP=MN=,∴此时N点坐标为(,); 综上可知N点坐标为(0,﹣3)或(,); (3)①当AC为平行四边形的边时,如图3,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中,∵∠ACK=∠EFH,∠AKC=∠EHF,AC=EF,∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=﹣=,即E点纵坐标为﹣,∴E(﹣1,﹣); 当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去; ②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,),∴线段AC的中点坐标为(﹣2.5,),设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=,∴x=﹣4,y=﹣t,代入直线AB解析式可得﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,); 综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).
复制答案
考点分析:
相关试题推荐

为鼓励贫困县农民尽快脱贫,某县政府出台了相关扶贫政策,由政策协调,某企业按成本价提供治理风沙的树苗给贫困县农民栽种,其余费用如运输、技术指导等由政府承担,张大爷一家按照相关政策投资栽种这种苗,已知这种树苗的成本价每棵10(张大爷一家承担),政府承担其余费用每棵2元,栽种一定时期后外地商贩前来收购,销售量y()与销售价x()之间的关系近似满足一次函数:y=﹣10x+500

(1)张大爷一家将销售单价定为20元,那么政府为他承担多少元?

(2)设张大爷一家获得的利润为W(),当销售单价定为多少元时,可获得最大利润?

(3)物价部门规定,这种树苗的销售单价不得高于25元,如果张大爷一家想要获得的利润不低于3000元,那么政府为他承担的费用最少为多少元?

 

查看答案

如图,在中,,边为直径作边于点,过点于点的延长线交于点.

(1)求证:的切线;

(2)若,,的半径与线段的长.

 

查看答案

据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0. 6,tan50°≈1.2,结果精确到1m)

(1)求B,C的距离.

(2)通过计算,判断此轿车是否超速.

 

查看答案

如图,ABC中,AB=AC,BAC=540,以AB为直径的O分别交AC,BC 于点D,E,过点B作O的切线,交AC的延长线于点F。

(1)求证:BE=CE;

(2)求CBF的度数;

(3)若AB=6,求的长。

 

查看答案

已知二次函数的图象与x轴交于A(20)B(40)两点,且函数经过点(310)

(1)求二次函数的解析式;

(2)设这个二次函数的顶点为P,求△ABP的面积;

(3)x为何值时,y≤0(请直接写出结果)

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.