满分5 > 初中数学试题 >

问题背景: 如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠...

问题背景:

如图1:在四边形ABCD中,AB=AD,BAD=120°,B=ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.

小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明ABE≌△ADG,再证明AEF≌△AGF,可得出结论,他的结论应是     

探索延伸:

如图2,若在四边形ABCD中,AB=AD,B+D=180°.E,F分别是BC,CD上的点,且∠EAF=BAD,上述结论是否仍然成立,并说明理由;

实际应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°A处,舰艇乙在指挥中心南偏东70°B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.

 

问题背景:EF=BE+DF; 探索延伸:结论仍然成立,理由见解析; 实际应用:此时两舰艇之间的距离为210海里. 【解析】 试题问题背景:根据全等三角形对应边相等解答; 探索延伸:延长FD到G,使DG=BE,连接AG,根据同角的补角相等求出∠B=∠ADG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等可得AE=AG,∠BAE=∠DAG,再求出∠EAF=∠GAF,然后利用“边角边”证明△AEF和△GAF全等,根据全等三角形对应边相等可得EF=GF,然后求解; 实际应用:先连接EF,延长AE、BF相交于点C,再求出∠EAF=∠AOB,判断出符合探索延伸的条件,最后根据探索延伸的结论解答. 试题解析:问题背景:EF=BE+DF; 探索延伸:EF=BE+DF仍然成立. 证明如下:如图2,延长FD到G,使DG=BE,连接AG, ∵∠B+∠ADC=180°,∠ADC+∠ADG=180°, ∴∠B=∠ADG, 在△ABE和△ADG中, , ∴△ABE≌△ADG(SAS), ∴AE=AG,∠BAE=∠DAG, ∵∠EAF=∠BAD, ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF, ∴∠EAF=∠GAF, 在△AEF和△GAF中, , ∴△AEF≌△GAF(SAS), ∴EF=FG, ∵FG=DG+DF=BE+DF, ∴EF=BE+DF; 实际应用:方法一:如图3,连接EF,延长AE、BF相交于点C, ∵∠AOB=30°+90°+(90°﹣70°)=140°, ∠EOF=70°, ∴∠EOF=∠AOB, 又∵OA=OB, ∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°, ∴符合探索延伸中的条件, ∴结论EF=AE+BF成立, 即EF=1.5×(60+80)=210海里. 答:此时两舰艇之间的距离是210海里.
复制答案
考点分析:
相关试题推荐

某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.

(1)甲、乙两队单独完成各需多少天?

(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?(总费用=施工费+工程师食宿费)

 

查看答案

如图,在ABC中,ADBCDBD=ADDG=DCEF分别是BGAC的中点.

(1)求证:DE=DFDEDF

(2)连接EF,若AC=10,求EF的长.

 

查看答案

如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l

(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.

(2)画出△DEF关于直线l对称的三角形.

(3)填空:∠C+∠E     

 

查看答案

化简求值:,其中

 

查看答案

1)解方程:

2)计算:1+

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.