满分5 > 初中数学试题 >

如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠B...

如图,在平面直角坐标系中有一直角三角形AOBO坐标原点,OA1tanBAO3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线yax2+bx+c经过点ABC

1)求抛物线的解析式;

2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴lx轴交于一点E,连接PE,交CDF,求以CEF为顶点三角形与△COD相似时点P的坐标.

 

(1)抛物线的解析式为y=﹣x2﹣2x+3;(2)当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3). 【解析】 (1)根据正切函数,可得OB,根据旋转的性质,可得△DOC≌△AOB,根据待定系数法,可得函数解析式; (2)分两种情况讨论:①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点;②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,得到△EFC∽△EMP,根据相似三角形的性质,可得PM与ME的关系,解方程,可得t的值,根据自变量与函数值的对应关系,可得答案. (1)在Rt△AOB中,OA=1,tan∠BAO3,∴OB=3OA=3. ∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A,B,C的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为 ,解得:,抛物线的解析式为y=﹣x2﹣2x+3; (2)∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴为l1,∴E点坐标为(﹣1,0),如图,分两种情况讨论: ①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4); ②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,∵∠CFE=∠PME=90°,∠CEF=∠PEM,∴△EFC∽△EMP,∴,∴MP=3ME. ∵点P的横坐标为t,∴P(t,﹣t2﹣2t+3). ∵P在第二象限,∴PM=﹣t2﹣2t+3,ME=﹣1﹣t,t<0,∴﹣t2﹣2t+3=3(﹣1﹣t),解得:t1=﹣2,t2=3(与t<0矛盾,舍去). 当t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3,∴P(﹣2,3). 综上所述:当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3).
复制答案
考点分析:
相关试题推荐

如图,AB⊙O的弦,半径OEABPAB的延长线上一点,PC⊙O相切于点CCEAB交于点F

1)求证:PCPF

2)连接OBBC,若OBPCBC3tanP,求FB的长.

 

查看答案

如图,在每个小正方形的边长均为1的方格纸中有线段ABCD,点ABCD均在小正方形顶点上.

1)在方格纸中画出面积为5的等腰直角△ABE,且点E在小正方形的顶点上;

2)在方格纸中画出面积为3的等腰△CDF,其中CD为一腰,且点F在小正方形的顶点上;

3)在(1)(2)条件下,连接EF,请直接写出线段EF长.

 

查看答案

南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向东南方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后在C处成功拦截不明船只,问我国海监执法船在前往监视巡查的过程中行驶了多少海里?

 

查看答案

为落实美丽抚顺的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.

(1)甲、乙两工程队每天能改造道路的长度分别是多少米?

(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?

 

查看答案

为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了校园安全知识竞赛,随机抽取了一个班学生的成绩进行整理,分为四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:

(1)请估计本校初三年级等级为的学生人数;

(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.