如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0)和点B,且OB=3OA,与y轴交于点C,此抛物线顶点为点D.
(1)求抛物线的表达式及点D的坐标;
(2)如果点E是y轴上的一点(点E与点C不重合),当BE⊥DE时,求点E的坐标;
(3)如果点F是抛物线上的一点.且∠FBD=135°,求点F的坐标.
如图,过原点O的直线与双曲线y=交于上A(m,n)、B,过点A的直线交x轴正半轴于点D,交y轴负半轴于点E,交双曲线y=于点P.
(1)当m=2时,求n的值;
(2)当OD:OE=1:2,且m=3时,求点P的坐标;
(3)若AD=DE,连接BE,BP,求△PBE的面积.
为推进我市生态文明建设,某校在美化校园活动中,设计小组想借助如图所示的直角墙角(两边足够长),用30m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为216m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是17m和8m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
如图,在四边形ABCD中,∠B=90°,对角线AC平分∠BAD,AC2=AB•AD.
(1)求证:AC⊥CD;
(2)若点E是AD的中点,连接CE,∠AEC=134°,求∠BCD的度数.
如图,某轮船在海上向正东方向航行,上午8:00在点A处测得小岛O在北偏东60°方向的16km处;上午8:30轮船到达B处,测得小岛O在北偏东30°方向.
(1)求轮船从A处到B处的航速;
(2)如果轮船按原速继续向东航行,还需经过多少时间轮船才恰好位于小岛的东南方向?
有两个可以自由转动的均匀转盘A、B都被分成了3等份,并在每一份内均标有数字,如图所示,规则如下:①分别转动转盘A、B; ②两个转盘停止后,观察两个指针所指份内的数字(若指针停在等分线上,那么重新转一次,直到指针指向某一份内为止).用列表法(或树状图)求出“两个指针所指的数字都是方程x2﹣3x+2=0的解”的概率.