满分5 > 初中数学试题 >

4的平方根是( ) A. B. 2 C. D.

4的平方根是(    )

A.  B. 2 C.  D.

 

C 【解析】 根据(±2)2=4,可得出答案. 【解析】 ∵(±2)2=4, ∴4的平方根是±2. 故选C.
复制答案
考点分析:
相关试题推荐

在实数、0、中,无理数的个数为(   )

A. 2个 B. 3个 C. 4个 D. 5个

 

查看答案

几何探究题

(1)发现:在平面内,若BCaACb,其中ab

当点A在线段BC上时(如图1),线段AB的长取得最小值,最小值为     

当点A在线段BC延长线上时(如图2),线段AB的长取得最大值,最大值为     

(2)应用:点A为线段BC外一动点,如图3,分别以ABAC为边,作等边△ABD和等边△ACE,连接CDBE

证明:CDBE

BC3AC1,则线段CD长度的最大值为     

(3)拓展:如图4,在平面直角坐标系中,点A的坐标为(20),点B的坐标为(50),点P为线AB外一动点,且PA2PMPB,∠BPM90°.请直接写出线段AM长的最大值及此时点P的坐标.

 

查看答案

为加快“秀美荆河水系生态治理工程”进度,污水处理厂决定购买10台污水处理设备.现有AB两种型号的设备,每台的价格分别为a万元,b万元,每月处理污水量分别为240吨,200吨.已知购买一台A型设备比购买一台B型设备多2万元,购买2A型设备比购买3B型设备少6万元.

1)求ab的值;

2)厂里预算购买污水处理设备的资金不超过105万元,你认为有哪几种购买方案;

3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为污水处理厂设计一种最省钱的购买方案.

 

查看答案

如图1,已知△ABC中,ABAC,点D是△ABC外一点(与点A分别在直线BC两侧),且DBDC,过点DDEAC,交射线ABE,连接AEBCF

1)求证:AD垂直BC

2)如图1,点E在线段AB上且不与B重合时,求证:DEAE

3)如图2,当点E在线段AB的延长线上时,写出线段DEACBE的数量关系.

 

查看答案

如图,在RtABC中,∠ACB90°,点DE分别在ABAC上,且CEBC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF

1)求证:△BDC≌△EFC

2)若EFCD,求证:∠BDC90°.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.