如图,在△ABC外作两个大小不同的等腰直角三角形,其中∠DAB=∠CAE=90°,AB=AD,AC=AE。连结DC、BE交于F点。
(1)求证:△DAC≌△BAE;
(2)求证:DC⊥BE;
(3)求证:∠DFA=∠EFA.
在一次“构造勾股数”的探究性学习中,老师给出了下表:
m | 2 | 3 | 3 | 4 | … |
n | 1 | 1 | 2 | 3 | … |
a | 22+12 | 32+12 | 32+22 | 42+32 | … |
b | 4 | 6 | 12 | 24 | … |
c | 22﹣12 | 32﹣12 | 32﹣22 | 42﹣32 | … |
其中m、n为正整数,且m>n.
(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.
(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a= ,b= ,c= .
(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.
如图,△ABC中,∠C=90°.
(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.
(保留作图痕迹,不要求写作法和证明);
(2)在(1)条件下,连结BD,当BC=3cm,AB=5cm时,求△BCD的周长.
某校八年级数学兴趣小组的同学调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图。依据图中信息,解答下列问题:
(1)接受这次调查的家长共有 人;
(2)补全条形统计图;
(3)在扇形统计图中,“很赞同”的家长占被调查家长总数的百分比是 ;
(4)在扇形统计图中,“不赞同”的家长部分所对应扇形的圆心角度数是 度.
如图,在△ABC中,点D是BC边的中点,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:DE=DF.
把下列多项式分解因式:
(1); (2)