的算术平方根是( )
A. 2 B. 4 C. ±2 D. ±4
如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD( )
A. ∠1=∠2 B. ∠3=∠4
C. ∠D=∠DCE D. ∠D+∠ACD=180°
如果P(m+3,2m+4)在y轴上,那么点P的坐标是( )
A. (﹣2,0) B. (0,﹣2) C. (1,0) D. (0,1)
如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=.
(1)求抛物线的解析式;
(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;
(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.
如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
已知,如图,在Rt△ABC中,CD是斜边上的中线,DE⊥AB交BC于点F,交AC的延长线于点E.
求证:(1)△ADE∽△FDB;
(2)CD2=DE•DF.