如图,长方形OABC中,O为平面直角坐标系的原点,A、C两点的坐标分别为(3,0),(0,5),点B在第一象限内.
(1)如图1,写出点B的坐标( );
(2)如图2,若过点C的直线CD交AB于点D,且把长方形OABC的周长分为3:1两部分,则点D的坐标( );
(3)如图3,将(2)中的线段CD向下平移,得到C′D′,使C′D′平分长方形OABC的面积,则此时点D′的坐标是( ).
如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.
如图,把△ABC平移,使点A平移到点O.
(1)作出平移后的△OB'C';
(2)写出△OB'C'的顶点坐标,并描述这个平移过程.
已知:点A在射线CE上,∠C=∠D.
(1)如图1,若AC∥BD,求证:AD∥BC;
(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;
(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.
如图,点D、E在AB上,点F、G分别在BC、CA上,且DG∥BC,∠1=∠2.
(1)求证:DC∥EF;
(2)若EF⊥AB,∠1=55°,求∠ADG的度数.
如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.