如图,菱形OABC的顶点O在坐标原点,顶点B在x轴的正半轴上,OA边在直线y=x上,AB边在直线y=-x+2上.
(1)直接写出:线段OA等于多少,∠AOC等于多少度;
(2)在对角线OB上有一动点P,以O为圆心,OP为半径画弧MN,分别交菱形的边OA、OC于点M、N,作⊙Q与边AB、BC、弧MN都相切,⊙Q分别与边AB、BC相切于点D、E,设⊙Q的半径为r,OP的长为y,求y与r之间的函数关系式,并写出自变量r的取值范围;
(3)若以O为圆心、OA长为半径作扇形OAC,请问在菱形OABC中,在除去扇形OAC后的剩余部分内,是否可以截下一个圆,使得它与扇形OAC刚好围成一个圆锥,若可以,求出这个圆的半径,若不可以,说明理由.
在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:
(1)计算(结果保留根号与π).
(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为 cm;
(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为 cm;
(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为 cm;
(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.
如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,点D是AB延长线上的一点,AE⊥DC交DC的延长线于点E,AC平分∠DAE.
(1)DE与⊙O有何位置关系?请说明理由.
(2)若AB=6,CD=4,求CE的长.
如图,在平面直角坐标系中,过格点A,B,C作一圆弧.
(1)直接写出圆弧所在圆的圆心P的坐标
(2)画出图形:过点B的一条直线l,使它与该圆弧相切;
(3)连结AC,求线段AC和弧AC之间图形的面积
在半径为17dm的圆柱形油罐内装进一些油后,横截面如图.
(1)若油面宽AB=16dm,求油的最大深度.
(2)在(1)的条件下,若油面宽变为CD=30dm,求油的最大深度上升了多少dm?
某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个,但售价不能超过70元.为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?