如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题:
(1)问:依据规律在第n个图中,黑色瓷砖多少块,白色瓷砖有多少块;
(2)问:依据规律在第8个图中,黑色瓷砖多少块,白色瓷砖有多少块;
(3)某新学校教室要装修,每间教室面积为68m2,准备定制边长为0.5米的正方形白色瓷砖和长为0.5米、宽为0.25米的长方形黑色瓷砖来铺地面.按照此图案方式进行装修,瓷砖无须切割,恰好完成铺设.已知白色瓷砖每块20元,黑色瓷砖每块10元,请问每间教室瓷砖共需要多少元?
邻边不相等的平行四边形纸片,剪去一个菱形,余下的一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.
(1)猜想与计算:
邻边长分别为3和5的平行四边形是______阶准菱形;已知▱ABCD的邻边长分别为a,b(a>b),满足a=8b+r,b=5r,请写出,▱ABCD是_____阶准菱形.
(2)操作与推理:
小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F处,得到四边形ABFE.请证明四边形ABFE是菱形.
已知 x1、x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根.
(1)求k的取值范围.
(2)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在求出k的值;若不存在,请说明理由.
如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=3,AD=4,∠A=60°,求CE的长.
近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A、B两种设备.每台B种设备价格比每台A种设备价格多0.7万元,花3万元购买A种设备和花7.2万元购买B种设备的数量相同.
(1)求A种、B种设备每台各多少万元?
(2)根据单位实际情况,需购进A、B两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台?
若方程组的解满足﹣1<x+y<1,求k的取值范围.