cos45°的值等于( )
A. B. 1 C. D.
某市冬季里某一天的气温为﹣8℃~2℃,则这一天的温差是( )
A. 6℃ B. ﹣6℃ C. 10℃ D. ﹣10℃
如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0).
(1)求直线CD的函数表达式;
(2)动点P在x轴上从点(﹣10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.
①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由;
②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.
如图1,对于平面上不大于的,我们给出如下定义:若点P在的内部或边界上,作于点E,.于点,则称为点P相对于的“优点距离”,记为
如图2,在平面直角坐标系xOy中,对于,点P为第一象限内或两条坐标轴正半轴上的动点,且满足5,点P运动形成的图形记为图形G.
(1)满足条件的其中一个点P的坐标是 __,图形G与坐标轴围成图形的面积等于 __ ;
(2)设图形G与x轴的公共点为点A,如图3,已知,,求的值;
(3)如果抛物线经过(2)中的A,B两点,点Q在A,B两点之间的物线上(点Q可与A,B两点重合),求当取最大值时,点Q 的坐标.
某市某水果批发市场某批发商原计划以每千克10元的单价对外批发销售某种水果.为了加快销售,该批发商对价格进行两次下调后,售价降为每千克6.4元.
(1)求平均每次下调的百分率;
(2)某大型超市准备到该批发商处购买2吨该水果,因数量较多,该批发商决定再给予两种优惠方案以供选择.方案一:打八折销售;方案二:不打折,每吨优惠现金1000元.试问超市采购员选择哪种方案更优惠?请说明理由.
如图,AB是⊙O的直径,AD是弦,OC垂直AD于F交⊙O于E,连结DE,BE,且∠C=∠BED.
(1)求证:AC是⊙O的切线;
(2)若OA=10,AD=16,求AC的长.