|x|=2,则x是( )
A. 2 B. C. D. 2或
如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.得平行四边形ABDC
(1)直接写出点C,D的坐标;
(2)若在y轴上存在点 M,连接MA,MB,使S△MAB=S平行四边形ABDC , 求出点M的坐标.
(3)若点P在直线BD上运动,连接PC,PO.
请画出图形,直接写出∠CPO、∠DCP、∠BOP的数量关系.
如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗?并说明理由.
如图,长方形OABC中,O为平面直角坐标系的原点,点A、C的坐标分别为A(3,0)、
C(0,2),点B在第一象限.
(1)写出点B的坐标;
(2)若过点C的直线交长方形的OA边于点D,且把长方形OABC的周长分成2∶3的两部分,求点D的坐标;
(3)如果将(2)中的线段CD向下平移3个单位长度,得到对应线段C′D′,在平面直角坐标系中画出△CD′C′,并求出它的面积。
完成下列推理说明:
(1)如图1,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下:
因为∠1=∠2(已知),且∠1=∠4(______ )
所以∠2=∠4(等量代换)
所以CE∥BF(______ )
所以∠ ______ =∠3(______ )
又因为∠B=∠C(已知)
所以∠3=∠B(等量代换)
所以AB∥CD(______ )
(2)如图2,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.
证明:∵∠B+∠BCD=180°( 已知 ),
∴AB∥CD (______ )
∴∠B= ______ (______ )
又∵∠B=∠D( 已知 ),
∴∠ ______ =∠ ______ (等量代换)
∴AD∥BE(______ )
∴∠E=∠DFE(______ )
如图,直线AB,CD,EF相交于点O.
(1)写出∠COE的邻补角;
(2)分别写出∠COE和∠BOE的对顶角;
(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度数.