满分5 > 初中数学试题 >

(10分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作...

10分在RtABC中,BAC=,D是BC的中点,E是AD的中点过点A作AFBC交BE的延长线于点F

1求证:AEFDEB

2证明四边形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面积

 

(1)证明详见解析;(2)证明详见解析;(3)10. 【解析】 试题(1)由∠DBE=∠AFE,∠BED=∠FEA,ED=EA,根据“AAS”证得△BDE≌△FAE(AAS); (2)由全等可得AF=BD,即AF=DC,根据一组对边平行且相等的四边形的平行四边形证得四边形ADCF是平行四边形,又邻边AD=DC,所以四边形四边形ADCF是菱形; (3)解法一:连接DF,证得四边形ABDF是平行四边形,从而得到对角线DF的长,利用菱形的对角线长求面积; 解法二:利用Rt△ABC的面积求得BC边上的高,即得到菱形ADCF中DC边上的高,利用平行四边形的面积公式求菱形的面积. 试题解析:(1)证明:在Rt△ABC中,∠BAC=,D是BC的中点, ∴AD=BC=DC=BD, ∵AF∥BC, ∴∠DBE=∠AFE, 又∵E是AD中点, ∴ED=EA, 又∠BED=∠FEA, ∴△BDE≌△FAE(AAS); (2)证明:由(1)知AF=BD,即AF=DC, ∴AF∥DC,AF=DC, ∴四边形ADCF是平行四边形, 又∵AD=DC, ∴四边形ADCF是菱形; (3)【解析】 (解法一)连接DF, ∵AFDC,BD=CD, ∴AFBD, ∴四边形ABDF是平行四边形, ∴DF=AB=5, ∴; (解法二)在Rt△ABC中,AC=4,AB=5, ∴BC=, 设BC边上的高为, 则, ∴, ∴.
复制答案
考点分析:
相关试题推荐

已知正比例函数y=kx的图象过点P3-3).

1)写出这个正比例函数的函数解析式;

2)已知点Aa2)在这个正比例函数的图象上,求a的值.

 

查看答案

已知在四边形ABCD中,AD=BC,∠D=DCE.求证:四边形ABCD是平行四边形.

 

查看答案

如图,在钝角ABC中,BC=9AB=17AC=10ADBCD,求AD的长.

 

查看答案

如图台风过后某希望小学的旗杆在离地某处断裂旗杆顶部落在离旗杆底部8 米处已知旗杆原长16你能求出旗杆在离底部多少米的位置断裂吗?

 

查看答案

如图反映的是小华从家里跑步去体育馆,在那里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小华离家的距离.根据图像回答下列问题:

(1)小华在体育馆锻炼了_____分钟;

(2)体育馆离文具店______千米;

(3)小华从家跑步到体育馆,从文具店散步回家的速度分别是多少千米/分钟?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.