满分5 > 初中数学试题 >

方程x(x-1)=4(x-1)的解是( ) A. 4和1 B. 1 C. 0和1...

方程xx-1=4x-1)的解是(  )

A. 41 B. 1 C. 01 D. 4

 

A 【解析】 可用因式分解法解方程得结论,也可通过代入试验法得结论. 【解析】 移项,得x(x-1)-4(x-1)=0 ∴(x-1)(x-4)=0 ,x-1=0或x-4=0 ∴x1=1,x2=4. 故选:A.
复制答案
考点分析:
相关试题推荐

平面内,若⊙O的半径为2OP=3,则点P在(  )

A.   B.   C.   D. 以上都有可能

 

查看答案

如图,已知抛物线y=x2+bx+c经过ABC的三个顶点,其中点A(0,1),点B(﹣9,10),ACx轴,点P是直线AC下方抛物线上的动点.

(1)求抛物线的解析式;

(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

 

查看答案

如图①,直线Ly=mx+n(m<0n>0)xy轴分别相交于AB两点,将△AOB绕点O逆时针旋转90°,得到△COD,过点ABD的抛物线P叫做L的关联抛物线,而L叫做P的关联直线.

(1)Ly=-x+2,则P表示的函数解析式为______;若P,则表示的函数解析式为_______

(2)如图②,若Ly=-3x+3P的对称轴与CD相交于点E,点FL上,点QP的对称轴上.当以点CEQF为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;

(3)如图③,若Ly=mx+1GAB中点,HCD中点,连接GHMGH中点,连接OM.若OM=,求出LP表示的函数解析式.

 

查看答案

如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过CCDAB于点DCDAE于点F,过CCGAEBA的延长线于点G

(1)求证:CG是⊙O的切线.

(2)求证:AF=CF

 

查看答案

某五金商店准备从机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用900元正好可以购进50个甲种零件和50个乙种零件.

(1)求每个甲种零件、每个乙种零件的进价分别为多少元?

(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出该五金商店本次从机械厂购进甲、乙两种零件有哪几种方案?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.