如图,在边长为2的正方形ABCD中,点P在AB上,点Q在DC的延长线上,连接DP,QP,且∠APD=∠QPD,PQ交BC于点G.
(1)求证:DQ=PQ;
(2)当tan∠APD=时,求:①CQ的长;②BG的长.
小林从点A出发,沿着坡角为α的斜坡向上走了650米到达点B,且sinα=.然后又沿着坡度i=1:3的斜坡向上走了500米达到点C.
(1)小明从A点到B点上升的高度是多少米?
(2)小明从A点到C点上升的高度CD是多少米?(结果保留根号)
已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.
(1)如图①,若∠P=35°,求∠ABP的度数;
(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.
随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和14.4万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递快递总件数的月平均增长率;
(2)如果平均每人每月最多可投递快递0.7万件,那么该公司现有的22名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
如图:已知▱ABCD,过点A的直线交BC的延长线于E,交BD、CD于F、G.
(1)若AB=3,BC=4,CE=2,求CG的长;
(2)证明:AF2=FG×FE.
将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.
(1)搅匀后从中摸出1个盒子,求摸出的盒子中是型矩形纸片的概率;
(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).