满分5 > 初中数学试题 >

如图,在中,,平分交于点,为上一点,经过点,的分别交,于点,,连接交于点. (1...

如图,在中,平分于点上一点,经过点分别交于点,连接于点.

(1)求证:的切线;

(2)设,试用含的代数式表示线段的长;

(3)若,求的长.

 

(1)证明见解析;(2)证明见解析;(3)证明见解析. 【解析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证; (2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD; (3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可. (1)证明:如图,连接OD, ∵AD为∠BAC的角平分线, ∴∠BAD=∠CAD, ∵OA=OD, ∴∠ODA=∠OAD, ∴∠ODA=∠CAD, ∴OD∥AC, ∵∠C=90°, ∴∠ODC=90°, ∴OD⊥BC, ∴BC为圆O的切线; (2)连接DF,由(1)知BC为圆O的切线, ∴∠FDC=∠DAF, ∴∠CDA=∠CFD, ∴∠AFD=∠ADB, ∵∠BAD=∠DAF, ∴△ABD∽△ADF, ∴ ,即AD2=AB•AF=xy, 则AD= (3)连接EF,在Rt△BOD中,sinB=, 设圆的半径为r,可得, 解得:r=5, ∴AE=10,AB=18, ∵AE是直径, ∴∠AFE=∠C=90°, ∴EF∥BC, ∴∠AEF=∠B, ∴sin∠AEF=, ∴AF=AE•sin∠AEF=10×, ∵AF∥OD, ∴,即DG=AD, ∵AD=, 则DG=×=.
复制答案
考点分析:
相关试题推荐

如图,平面直角坐标系中,已知点的坐标为.

1)请用直尺(不带刻度)和圆规作一条直线,它与轴和轴的正半轴分别交于点和点,且关于直线对称.(作图不必写作法,但要保留作图痕迹.

2)请求出(1)中作出的直线的函数表达式.

 

查看答案

如图,在中,,以点为圆心,的长为半径画弧,交线段于点,以点为圆心,长为半径画弧,交线段于点,连结.

1)若,求的度数;

2)设

①线段的长度是方程的一个根吗?说明理由.

②若线段,求的值.

 

查看答案

如图,在数轴上,点分别表示数.

(1)求的取值范围.

(2)数轴上表示数的点应落在(    )

A.点的左边           B.线段            C.点的右边

 

查看答案

我国古代数学著作《增删算法统宗》记载绳索量竿问题:一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5.求绳索长和竿长.

 

查看答案

先化简再求值:,其中.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.