已知:如图,在直角梯形ABCD中,AD∥BC,DC⊥BC,P是边AB上一动点,PE⊥CD,垂足为点E,PM⊥AB,交边CD于点M,AD=1,AB=5,CD=4.
(1)求证:∠PME=∠B;
(2)设A、P两点的距离为x,EM=y,求y关于x的函数解析式,并写出它的定义域;
(3)连接PD,当△PDM是以PM为腰的等腰三角形时,求AP的长.
已知:在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A.
(1)观察图形,猜想BD与⊙O的位置关系;
(2)证明第(1)题的猜想
为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.
(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?
(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过11800万元,地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校改扩建资金分别为每所300万元和500万元,请问共有哪几种改扩建方案?
如图,已知点A、P在反比例函数y=(k<0)的图象上,点B、Q在直线y=x-3的图象上,点B的纵坐标为-1,AB⊥x轴,且S△OAB=4,若P、Q两点关于y轴对称,设点P的坐标为(m,n).
(1)求点A的坐标和k的值;
(2)求的值.
一中在每年5月都会举行艺术节活动,活动的形式有A.唱歌、B.跳舞、C.绘画、D.演讲四种形式,学校围绕“你最喜欢的活动方式是什么?”在八年级学生中进行随机抽样调查(四个选项中必须且只选一项),根据调查统计结果,绘制了如图两种不完整的统计图表:
请结合统计图表,回答下列问题:
(1)本次抽查的学生共300人,m=35,并将条形统计图补充完整;
(2)学校采用抽签方式让每班在A、B、C、D四项进行展示,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.
(1)计算:- sin211°+(π﹣2017)0﹣2sin30°﹣sin279°.
(2)先化简,再求值:1- ÷(﹣x+1),其中x满足x2+7x=0.