方程组的解是( )
A. B. C. D.
抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).
(1)求抛物线的解析式;
(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.
(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.
梯形ABCD中,AD∥BC,请用尺规作图并解决问题.
(1)作AB中点E,连接DE并延长交射线CB于点F,在DF的下方作∠FDG=∠ADE,边DG交BC于点G,连接EG;
(2)试判断EG与DF的位置关系,并说明理由.
如图,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求AB的长;
(2)延长DB到F,使BF=BO,连接FA,请判断直线FA与⊙O的位置关系?并说明理由.
“六一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:小强:“阿姨,我有10元钱,想买一盒饼干和一袋牛奶.”阿姨:“小朋友,本来你用10元钱买一盒饼干是有钱多的,但要再买一袋牛奶钱就不够了.不过今天是儿童节,饼干打九折,两样东西请你拿好,找你8角钱.”如果每盒饼干和每袋牛奶的标价分别设为x元,y元,请你根据以上信息:
(1)请你求出x与y之间的关系式;(用含x的式子表示y)
(2)请你根据上述条件,求出每盒饼干和每袋牛奶的标价.
如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF。
(1)求证:△EBF≌△DFC;
(2)求证:四边形AEFD是平行四边形;
(3)①△ABC满足_____________________时,四边形AEFD是菱形。(无需证明)
②△ABC满足_______________________时,四边形AEFD是矩形。(无需证明)
③△ABC满足_______________________时,四边形AEFD是正方形。(无需证明)