如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
中秋节前夕,某公司的李会计受公司委派去超市购买若干盒美心月饼,超市给出了该种月饼不同购买数量的价格优惠,如图,折线ABCD表示购买这种月饼每盒的价格y(元)与盒数x(盒)之间的函数关系.
(1)当购买这种月饼盒数不超过10盒时,一盒月饼的价格为 元;
(2)求出当10<x<25时,y与x之间的函数关系式;
(3)当时李会计支付了3600元购买这种月饼,那么李会计买了多少盒这种月饼?
为了解全校学生上学的交通方式,该校九年级班的4名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查按骑自行车、乘公交车、步行、乘私家车、其他方式设置选项,要求被调查同学从中单选,并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:
本次接受调查的总人数是______人,并把条形统计图补充完整;
在扇形统计图中,“乘私家车的人数所占的百分比是______,“其他方式”所在扇形的圆心角度数是______度;
已知这4名同学中有2名女同学,要从中选两名同学汇报调查结果,请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF。
(1)求证:D是BC的中点
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。
如图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AB平行,一条与AD平行,其余部分种植草坪,若使草坪的面积为570米,问小路宽为多少米?
如图,BD为平行四边形ABCD的对角线,按要求完成下列各题.
用直尺和圆规作出对角线BD的垂直平分线交AD于点E,交BC于点F,垂足为O,连接BE和DF,保留作图痕迹;不要求写作法
在的基础上,求证:.