请你认真阅读材料,然后解答问题:
材料:在平面直角坐标系xOy中,对于任意三点A、B、C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”.
例如:三点的坐标分别为,,,则“水平底”,“铅垂高”,“矩面积”.
问题:
若,,,“水平底”______,“铅垂高”______,“矩面积”______.
若,,的矩面积为12,求P点的坐标.
若,,,请直接写出A、B、P三点的“矩面积”的最小值.
如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.
(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE= 度;
(2)若图1中的∠B=x,∠ACB=y,则∠CFE= ;(用含x、y的代数式表示)
(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.
某公司组织员工出去旅游,公司联系旅游公司提供车辆,该公司现有50座与35座两种车辆,如果用35座的车,会有5人没座;如果全部换乘50座的车,则可少用2辆车,而且多出15个座位.
若该公司只能单独租其中一种车,则分别需要多少辆?
若35座车的日租金为250元辆,50座的日租金为320元辆,有哪种方案能使座位刚好且费用最少?用这种方案公司要出多少资金.
如图,在正方形网格中,小正方形的边长为1,A,B,C为格点
判断的形状,并说明理由.
求BC边上的高.
某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5剑,他们的总成绩单位:环相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差见小宇的作业.
______,______;
请完成图中乙成绩变化情况的折线;
观察你补全的折线图可以看出______填“甲”或“乙”的成绩比较稳定参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;并判断谁将被选中.
如图,已知,两点在一次函数的图象上,并且直线交x轴于点C,交y轴于点D.
求出C,D两点的坐标;
求的面积.