一个能被13整除的自然数我们称为“十三数”,“十三数”的特征是:若把这个自然数的末三位与末三位以前的数字组成的数之差,如果能被13整除,那么这个自然数就一定能被13整除.例如:判断383357能不能被13整除,这个数的末三位数字是357,末三位以前的数字组成的数是383,这两个数的差是383﹣357=26,26能被13整除,因此383357是“十三数”.
(1)判断3253和254514是否为“十三数”,请说明理由.
(2)若一个四位自然数,千位数字和十位数字相同,百位数字与个位数字相同,则称这个四位数为“间同数”.
①求证:任意一个四位“间同数”能被101整除.
②若一个四位自然数既是“十三数”,又是“间同数”,求满足条件的所有四位数的最大值与最小值之差.
已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类
①若a≠0,b=c=0,则称该整式为P类整式;
②若a≠0,b≠0,c=0,则称该整式为PQ类整式;
③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;
(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若 ,则称该整式为“R类整式”,若 ,则称该整式为“QR类整式”;
(2)说明整式x2﹣5x+5为“PQ类整式;
(3)x2+x+1是哪一类整式?说明理由.
有若干个数,第一个数记为a1,第2个数记为a2,第3个数记为a3,……,第n个数记为an,若a1=﹣,从第二个数起,每一个数都是“1”与它前面那个数的差的倒数.
(1)直接写出a2,a3,a4的值;
(2)根据以上结果,计算a1+a2+a3+…+a2017+a2018.
观察下面三行数:
第1列 | 第2列 | 第3列 | 第4列 | … | 第n列 |
﹣3 | 9 | a | 81 | … | r |
1 | ﹣3 | 9 | b | … | s |
﹣2 | 10 | c | 82 | … | t |
(1)直接写出a,b,c的值;
(2)直接写出r,s,t的值;
(3)设x,y,z分别为第①②③行的第2019个数,求x+6y+z的值.
某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)
星 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增 | +6 | ﹣3 | ﹣5 | +11 | ﹣8 | +14 | ﹣9 |
(1)根据记录可知前三天共生产 个;
(2)产量最多的一天比产量最少的一天多生产 个;
(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?
先化简,再求值:
(1),其中x=﹣2,y=
(2),其中a=﹣1,b=2,c=﹣2.