满分5 > 初中数学试题 >

如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0). (...

如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).

(1)求该抛物线所对应的函数解析式;

(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.

①求四边形ACFD的面积;

②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.

 

(1)y=﹣x2+2x+3;(2)①S四边形ACFD= 4;②Q点坐标为(1,4)或(,)或(,). 【解析】 此题涉及的知识点是抛物线的综合应用,难度较大,需要有很好的逻辑思维,解题时先根据已知点的坐标列方程求出函数解析式,然后再根据解析式和已知条件求出四边形的面积和点的坐标。 (1)由题意可得,解得, ∴抛物线解析式为y=﹣x2+2x+3; (2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4, ∴F(1,4), ∵C(0,3),D(2,3), ∴CD=2,且CD∥x轴, ∵A(﹣1,0), ∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4; ②∵点P在线段AB上, ∴∠DAQ不可能为直角, ∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°, i.当∠ADQ=90°时,则DQ⊥AD, ∵A(﹣1,0),D(2,3), ∴直线AD解析式为y=x+1, ∴可设直线DQ解析式为y=﹣x+b′, 把D(2,3)代入可求得b′=5, ∴直线DQ解析式为y=﹣x+5, 联立直线DQ和抛物线解析式可得,解得或, ∴Q(1,4); ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3), 设直线AQ的解析式为y=k1x+b1, 把A、Q坐标代入可得,解得k1=﹣(t﹣3), 设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t, ∵AQ⊥DQ, ∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=, 当t=时,﹣t2+2t+3=, 当t=时,﹣t2+2t+3=, ∴Q点坐标为(,)或(,); 综上可知Q点坐标为(1,4)或(,)或(,).
复制答案
考点分析:
相关试题推荐

已知直线l经过A(60)B(012)两点,且与直线yx交于点C,点P(m0)x轴上运动.

(1)求直线l的解析式;

(2)过点Pl的平行线交直线yx于点D,当m3时,求△PCD的面积;

(3)是否存在点P,使得△PCA成为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

 

查看答案

某文具商店销售功能相同的AB两种品牌的计算器,购买2A品牌和3B品牌的计算器共需156元;购买3A品牌和1B品牌的计算器共需122元.

1)求这两种品牌计算器的单价;

2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买xA品牌的计算器需要y1元,购买xx>5)个B品牌的计算器需要y2元,分别求出y1y2关于x的函数关系式;

3)当需要购买50个计算器时,买哪种品牌的计算器更合算?

 

查看答案

已知:如图,四边形ABCD是正方形,∠PAQ45°,将∠PAQ绕着正方形的顶点A旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC的平分线分别交于点MN,连接MN

(1)求证:△ABM∽△NDA

(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.

 

查看答案

如图,等腰△ABC内接于半径为5⊙OABACtanABC.求BC的长.

 

查看答案

不透明的袋子中装有4个相同的小球,它们除颜色外无其它差别,把它们分别标号:1234

(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率

(2)随机摸出两个小球,直接写出“两次取出的球标号和等于4”的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.