某市的出租车收费y(元)与路程x(千米)之间的函数关系如图所示.
(1)图中AB段的意义是 .
(2)当x>2时,y与x的函数关系式为 .
(3)张先生打算乘出租车从甲地去丙地,但需途径乙地办点事,已知甲地到乙地的路程为1km,乙地至丙地的路程超过3km,现有两种打车方案:
方案一:先打车从甲地到乙地,办完事后,再打另一部出租车去丙地;
方案二:先打车从甲地到乙地,让出租车司机等候,办完事后,继续乘该车去丙地(出租车等候期间,张先生每分钟另付0.2元,假设计价器不变).
张先生应选择哪种方案较为合算?试说明理由.
已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.
求证:△ABC是等腰三角形.
某软件公司开发一种图书软件,前期投入的开发、广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费200元.如果每套定价700元,软件公司至少要售出多少套才能确保不亏本?
如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.
(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形.
(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.
计算题
(1)解不等式2x+9≥3(x+2)
(2)解不等式组:,并写出其整数解.
(3)已知二元一次方程组的解x,y均是正数,
①求a的取值范围.
②化简|4a+5|﹣|a﹣4|.
如图,已知线段a,h.求作:△ABC,使AB=AC,BC=a,高AD=h(不写作法,保留作图痕迹,写出结论)