下列图形是中心对称图形的是( )
A. B. C. D.
如图,抛物线y=﹣x2﹣2x+c的经过D(﹣2,3),与x轴交于A、B两点(点A在点B的左侧)、与y轴交于点C.
(1)求抛物线的表达式和A、B两点坐标;
(2)在抛物线的对称轴上有一点P,使得∠OAP=∠BCO,求点P的坐标;
(3)点M在抛物线上,点N在抛物线对称轴上.
①当∠ACM=90°时,求点M的坐标;
②是否存在这样的点M与点N,使以M、N、A、C为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.
如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=OC,连接 CE、OE,连接AE交OD于点F.
(1)求证:OE=CD;
(2)若菱形ABCD的边长为6,∠ABC=60°,求AE的长.
某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.
(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?
(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?
如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置P的铅直高度PB.(测倾器高度忽略不计,结果保留根号形式)