满分5 > 初中数学试题 >

抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3). ...

抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).

(1)求抛物线的解析式;

(2)如图1,P为线段BC上一点,过点Py轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;

(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.

 

(1)y=﹣x2+2x+3;(2)当a=时,△BDC的面积最大,此时P(,);(3)m的变化范围为:﹣≤m≤5 【解析】 试题 【解析】 (1)由题意得:,解得:, ∴抛物线解析式为; (2)令, ∴x1= -1,x2=3,即B(3,0), 设直线BC的解析式为y=kx+b′, ∴,解得:, ∴直线BC的解析式为, 设P(a,3-a),则D(a,-a2+2a+3), ∴PD=(-a2+2a+3)-(3-a)=-a2+3a, ∴S△BDC=S△PDC+S△PDB , ∴当时,△BDC的面积最大,此时P(,); (3)由(1),y=-x2+2x+3=-(x-1)2+4, ∴OF=1,EF=4,OC=3, 过C作CH⊥EF于H点,则CH=EH=1, 当M在EF左侧时, ∵∠MNC=90°, 则△MNF∽△NCH, ∴, 设FN=n,则NH=3-n, ∴, 即n2-3n-m+1=0, 关于n的方程有解,△=(-3)2-4(-m+1)≥0, 得m≥, 当M在EF右侧时,Rt△CHE中,CH=EH=1,∠CEH=45°,即∠CEF=45°, 作EM⊥CE交x轴于点M,则∠FEM=45°, ∵FM=EF=4, ∴OM=5, 即N为点E时,OM=5, ∴m≤5, 综上,m的变化范围为:≤m≤5.
复制答案
考点分析:
相关试题推荐

如图,ABO的直径,PBA延长线上一点,CGO的弦∠PCA=∠ABCCGAB,垂足为D

(1)求证:PCO的切线;

(2)求证:

(3)过点AAEPCO于点E,交CD于点F,连接BE,若sinPCF5,求BE的长.

 

查看答案

某学校准备购买若干台电脑和打印机,如果购买1台电脑和2台打印机,一共花费5900元;如果购买2台电脑和1台打印机,一共花费8200元;

(1)求每台电脑和每台打印机的价格分别是多少元?

(2)如果学校购买电脑和打印机的预算费用不超过67000元,并且购买打印机的台数要比购买电脑的台数多1台,那么该学校最多能购买多少台打印机?

 

查看答案

ABC为等边三角形,

(1)求证:四边形是菱形.

(2)的角平分线,连接,找出图中所有的等腰三角形.

 

查看答案

某学校在倡导学生大课间活动中,随机抽取了部分学生对“我最喜爱课间活动”进行了一次抽样调查,分别从打篮球、踢足球、自由活动、跳绳、其它、等5个方面进行问卷调查(每人只能选一项),根据调查结果绘制了如图的不完整统计图,请你根据图中信息,解答下列问题

(1)本次调查共抽取了学生多少人?

(2)求本次调查中喜欢踢足球人数,并补全条形统计图;

(3)若全校共有中学生1200人,请你估计我校喜欢跳绳学生有多少人.

 

查看答案

如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点

(1)在图1中以格点为顶点画一个面积为5的正方形;

(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.