满分5 > 初中数学试题 >

已知如图 1,在中,,,点在上,交于,点是的中点. (1)写出线段与线段的关系并...

已知如图 1,在中,,点上,,点的中点.

(1)写出线段与线段的关系并证明;

(2)如图,将绕点逆时针旋转,其它条件不变,线段与线段的关系是否变化,写出你的结论并证明;

(3) 绕点逆时针旋转一周,如果,直接写出线段的范围.

 

(1)结论:FD=FC,DF⊥CF;(2)结论不变.(3)≤BF≤3. 【解析】 (1)根据直角三角形的性质先找出相关角、边的关系,利用等量代换得到结果.(2)旋转前后,图形的性质是不变的,据此可以直接找到旋转前后边角的关系,从而证明结论(3)要使BF最长,只有点E落在AB上即可要使BF最短,只有点E落在AB的延长线即可. (1)结论:FD=FC,DF⊥CF. 理由:如图1中, ∵∠ADE=∠ACE=90°,AF=FE, ∴DF=AF=EF=CF, ∴∠FAD=∠FDA,∠FAC=∠FCA, ∴∠DFE=∠FDA+∠FAD=2∠FAD,∠EFC=∠FAC+∠FCA=2∠FAC, ∵CA=CB,∠ACB=90°, ∴∠BAC=45°, ∴∠DFC=∠EFD+∠EFC=2(∠FAD+∠FAC)=90°, ∴DF=FC,DF⊥FC. (2)结论不变. 理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O. ∵BC⊥AM,AC=CM, ∴BA=BM,同法BE=BN, ∵∠ABM=∠EBN=90°, ∴∠NBA=∠EBM, ∴△ABN≌△MBE, ∴AN=EM,∴∠BAN=∠BME, ∵AF=FE,AC=CM, ∴CF=EM,FC∥EM,同法FD=AN,FD∥AN, ∴FD=FC, ∵∠BME+∠BOM=90°,∠BOM=∠AOH, ∴∠BAN+∠AOH=90°, ∴∠AHO=90°, ∴AN⊥MH,FD⊥FC. (3)如图3中,当点E落在AB上时,BF的长最大,最大值=3 如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=. 综上所述,≤BF≤3.
复制答案
考点分析:
相关试题推荐

如图,在△ABC中,ABAC,⊙O是△ABC的外接圆,AEABBC于点D,交⊙O于点EFDA的延长线上,且AFAD.若AF3tanABD,求⊙O的直径.

 

查看答案

厨师将一定质量的面团做成粗细一致的拉面时,面条的总长度y(m)与面条横截面积x(mm2)之间成反比例函数关系.其图象经过A(432)B(t80)两点.

(1)yx之间的函数表达式;

(2)t的值,并解释t的实际意义;

(3)如果厨师做出的面条横截面面积不超过3.2mm2,那么面条的总长度至少为_____m

 

查看答案

如图,⊙O的直径AB10,弦AC6,∠ACB的平分线交⊙O于点D,过点DDEABCA延长线于点E,连接ADBD

(1)ABD的面积是______

(2)求证:DE是⊙O的切线.

(3)求线段DE的长.

 

查看答案

品中华诗词,寻文化基因.某校举办了第二届中华诗词大赛,将该校八年级参加竞赛的学生成绩统计后,绘制了如下不完整的频数分布统计表与频数分布直方图.

频数分布统计表

组别

成绩x(分)

人数

百分比

A

60≤x<70

8

20%

B

70≤x<80

16

m%

C

80≤x<90

a

30%

D

90≤<x≤100

4

10%

 

请观察图表,解答下列问题:

(1)表中a=     ,m=     

(2)补全频数分布直方图;

(3)D组的4名学生中,有1名男生和3名女生.现从中随机抽取2名学生参加市级竞赛,则抽取的2名学生恰好是一名男生和一名女生的概率为     

 

查看答案

如图,已知△ABC中,∠ABC90°

(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)

①作线段AC的垂直平分线l,交AC于点O

②连接BO并延长,在BO的延长线上截取OD,使得ODOB

③连接DADC

(2)试判断ADCD的位置关系,并说明理由.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.