为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.
求每套队服和每个足球的价格是多少?
若城区四校联合购买100套队服和个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;
在的条件下,若,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?
已知:如图,在平行四边形ABCD中,BC=AC,E,F分别是AB,CD的中点,连接CE并延长交DA的延长线于M,连接AF并延长交BC的延长线于N.
(1)求证:△ABN≌△CDM;
(2)当平行四边形ABCD的边或角满足什么关系时,四边形AECF是正方形?请说明理由.
如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象与直线y=x交于点D,且反比例函数y=交BC于点E,AD=3.
(1)求D点的坐标及反比例函数的关系式;
(2)若矩形的面积是24,请写出△CDE的面积(不需要写解答过程).
如图,1号楼在2号楼的南侧,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=35m.请求出两楼之间的距离AB的长度(结果保留整数)
(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)
为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时甲同学先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由乙同学从中随机抽取一张卡片,甲、乙两同学按各自抽取的内容进行诵读比赛.
请用列表或画树状图的方法求甲、乙两同学诵读两个不同材料的概率.
在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且a=7,c=7,求出直角三角形的其他元素.